Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Language
Year range
1.
Genet. mol. res. (Online) ; 6(2): 445-452, 2007. ilus, tab, graf
Article in English | LILACS | ID: lil-482025

ABSTRACT

Evaluation of transgenic crops under field conditions is a fundamental step for the production of genetically engineered varieties. In order to determine if there is pollen dispersal from transgenic to nontransgenic soybean plants, a field release experiment was conducted in the Cerrado region of Brazil. Nontransgenic plants were cultivated in plots surrounding Roundup Ready transgenic plants carrying the cp4 epsps gene, which confers herbicide tolerance against glyphosate herbicide, and pollen dispersal was evaluated by checking for the dominant gene. The percentage of cross-pollination was calculated as a fraction of herbicide-tolerant and -nontolerant plants. The greatest amount of transgenic pollen dispersion was observed in the first row, located at one meter from the central (transgenic) plot, with a 0.52% average frequency. The frequency of pollen dispersion decreased to 0.12% in row 2, reaching 0% when the plants were up to 10 m distance from the central plot. Under these conditions pollen flow was higher for a short distance. This fact suggests that the management necessary to avoid cross-pollination from transgenic to nontransgenic plants in the seed production fields should be similar to the procedures currently utilized to produce commercial seeds.


Subject(s)
Soybeans/genetics , Gene Flow , Plants, Genetically Modified/genetics , Regression Analysis , Brazil , Crosses, Genetic , Genetic Engineering , Genes, Dominant , Genes, Plant , Models, Genetic , Plants/genetics , Pollen/metabolism , Seeds/metabolism , Transgenes
2.
Genet. mol. res. (Online) ; 4(2): 177-184, 30 jun. 2005. ilus, graf
Article in English | LILACS | ID: lil-445294

ABSTRACT

Transgene elimination is a poorly studied phenomenon in plants. We made genetic and molecular studies of a transgenic dry bean line immune to bean golden mosaic geminivirus and a soybean line. In both lines, the transgenes were stable during the vegetative phase but were eliminated during meiosis. Due to its potential biotechnological value, this transgenic line was micropropagated by grafting and the vegetative copies were studied for more than two years. More than 300 plants of progeny were obtained during this period, demonstrating that the phenomenon of elimination was consistently repeated and offering an opportunity for detailed study of transgene elimination, including the characterization of the integration sites. Cloning and sequencing of the transgenic loci, reciprocal crosses to untransformed plants, genomic DNA blots, and GUS assays were performed in the transgenic lines. Based on the molecular and genetic characterization, possible mechanisms involved in transgene elimination include intrachromosomal recombination, genetic instability resulting from the tissue culture manipulations, and co-elimination of transgenes, triggered by a process of genome defense.


Subject(s)
Soybeans/genetics , Phaseolus/genetics , Plants, Genetically Modified/genetics , Transgenes/genetics , Mosaic Viruses , DNA, Plant , Gene Deletion , Soybeans/virology , Phaseolus/virology , Polymerase Chain Reaction , Genetic Vectors/genetics
3.
Genet. mol. res. (Online) ; 4(2): 185-196, 30 jun. 2005. ilus, graf
Article in English | LILACS | ID: lil-445293

ABSTRACT

The development of an efficient transfection system in livestock cells is an important step towards investigating gene transfer and the functioning and production of transgenic animals. Important factors involved in cationic liposome mediated gene transfer were evaluated through in vitro transfection of bovine, caprine and ovine fibroblast cells. Transfection of plasmid DNA complexes of different commercially available liposomes (Lipofectamine, Lipofectin, Cellfectin and DMRIE-C; Gibco-BRL, USA) was evaluated utilizing the following parameters: DNA/liposome ratio, cell density, DNA conformation, and the effect of transfection time on the efficiency of bovine fibroblasts to express a reporter gene. The effects and concentrations of liposomes were also evaluated in caprine and ovine fibroblasts. Lipofectamine alone and Lipofectamine with Plus reagent induced high-frequency expression of beta-galactosidase and neo genes in all cells evaluated (47 and 88.3%, respectively). Regarding phenotype, chromosomal stability was similar in transfected and non-transfected cells. The parameters set in this study will establish a foundation for utilizing transfected fibroblast cells to generate transgenic animals through nuclear transfer technology and gene function studies.


Subject(s)
Animals , Animals, Genetically Modified , Cattle/genetics , Fibroblasts/transplantation , Liposomes , Transfection/methods , DNA , Cytomegalovirus , Cell Count , Cells, Cultured , Gene Expression , Sheep/genetics , Plasmids/genetics , Reproducibility of Results , Swine/genetics , Genetic Vectors , beta-Galactosidase/genetics
4.
Genet. mol. res. (Online) ; 4(1): 55-66, Mar. 2005.
Article in English | LILACS | ID: lil-417409

ABSTRACT

An association of two techniques, nuclear transfer (NT), and transfection of somatic animal cells, has numerous potential applications and considerable impact, mainly in agriculture, medicine, pharmacy, and fundamental biology. In addition, somatic cell nuclear transfer is the most efficient alternative to produce large transgenic animals. We compared in vitro and in vivo developmental capacities of NT using fibroblast cells isolated from a 14-month-old cloned Simmental heifer (FCE) vs the same line transfected with a plasmid containing neomycin-resistant genes (TFCE). There were no significant differences (P > 0.5) in either fusion (116/149 = 78% vs 216/301 = 72%), cleavage (78/116 = 67% vs 141/216 = 65%) and blastocyst (35/116 = 30% vs 52/216 = 24%) rates or in pregnancy rate at 30 to 35 days after embryo transfer (2/17 vs 3/17) between NT using FCE and TFCE, respectively. Transfection and long-term in vitro culture of transfected cells did not affect developmental capacity of NT embryos up to 40 days of gestation


Subject(s)
Animals , Female , Pregnancy , Animals, Genetically Modified , Cattle/genetics , Embryo Transfer , Fibroblasts/transplantation , Cell Nucleus/transplantation , Blastocyst/physiology , Cloning, Organism , Clone Cells/physiology , Polymerase Chain Reaction , Transfection/methods
5.
Genet. mol. res. (Online) ; 4(4): 812-821, 2005. tab, ilus
Article in English | LILACS | ID: lil-444840

ABSTRACT

Transgenesis in cattle has provided numerous opportunities for livestock production. The development of nuclear transfer (NT) technology has improved the production of transgenic livestock. However, the isolation of pure colonies from a single transfection event remains laborious and can be a constraint in the production of transgenic livestock. We used 96-well cell culture plates to isolate cell lineages obtained from a single fibroblast transfected with the pCi-Neo plasmid. Since single mammalian cells do not grow well in fresh medium, we evaluated the use of conditioned medium. The neomycin phosphotransferase gene was detected in isolated colonies and NT embryos were produced from these cells. Multiplex-PCR assays were performed to detect the transfected fragment as well as autosomal satellite DNA in single NT embryos. This approach provided a reliable method for isolating transfected mammalian cells and for diagnosing the incorporation of desirable vectors in NT embryos. This method can reduce the time and cost of transgenic livestock production.


Subject(s)
Animals , Animals, Genetically Modified/genetics , Cattle/genetics , Transgenes/genetics , Nuclear Transfer Techniques , Animals, Genetically Modified/embryology , Cattle/embryology , Fibroblasts/cytology , Cell Nucleus/genetics
6.
Braz. j. med. biol. res ; 34(9): 1115-1124, Sept. 2001. ilus, tab
Article in English | LILACS | ID: lil-290407

ABSTRACT

Chicken embryos kept in culture medium were bombarded using a high helium gas pressure biolistic device. To optimize the factors that affect transformation efficiency, the lacZ gene under control of the human cytomegalovirus immediate early enhancer/promoter was used as a reporter gene. There was an inverse relationship between survival rate and transformation efficiency. The best conditions obtained for high embryo survival and high transformation efficiency were achieved with 800 psi helium gas pressure, 500 mmHg vacuum, gold particles, an 8 cm DNA-coated microparticle flying distance to the embryo and embryo placement 0.5 cm from the center of the particle dispersion cone. Under these conditions, transformation efficiency was 100 percent, survival rate 25 percent and the number of expression units in the embryo body cells ranged from 100 to 1,000. Expression of green fluorescent protein was also detected in embryos bombarded under optimal conditions. Based on the results obtained, the biolistic process can be considered an efficient method for the transformation of chicken embryos and therefore can be used as a model system to study transient gene expression and tissue-specific promoters


Subject(s)
Animals , Chick Embryo , Biolistics , Gene Transfer Techniques , In Vitro Techniques , beta-Galactosidase/metabolism , Gene Expression , Genes, Reporter , Helium , Indicators and Reagents/metabolism , Lac Operon , Luminescent Proteins/metabolism , Plasmids , Pressure
7.
Braz. j. med. biol. res ; 32(2): 207-14, feb. 1999. tab, graf
Article in English | LILACS | ID: lil-228262

ABSTRACT

Gene vaccines represent a new and promising approach to control infectious diseases, inducing a protective immune response in the appropriate host. Several routes and methods of genetic immunization have been shown to induce antibody production as well as T helper (Th) cell and cytotoxic T lymphocyte activation. However, few studies have compared the nature of the immune responses generated by different gene vaccination delivery systems. In the present study we reviewed some aspects of immunity induced by gene immunization and compared the immune responses produced by intramuscular (im) DNA injection to gene gun-mediated DNA transfer into the skin of BALB/c mice. Using a reporter gene coding for ß-galactosidase, we have demonstrated that im injection raised a predominantly Th1 response with mostly IgG2a anti-ßgal produced, while gene gun immunization induced a mixed Th1/Th2 profile with a balanced production of IgG2a and IgG1 subclasses. Distinct types of immune responses were generated by different methods of gene delivery. These findings have important implications for genetic vaccine design. Firstly, a combination between these two systems may create optimal conditions for the induction of a broad-based immune response. Alternatively, a particular gene vaccine delivery method might be used according to the immune response required for host protection. Here, we describe the characteristics of the immune response induced by gene vaccination and the properties of DNA involved in this process


Subject(s)
Animals , Mice , Genes , Immunotherapy, Active/methods , Vaccines, DNA/immunology , Biolistics , Gene Transfer Techniques , Mice, Inbred BALB C
8.
Braz. j. med. biol. res ; 31(1): 77-84, Jan. 1998. ilus, graf
Article in English | LILACS | ID: lil-212541

ABSTRACT

Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer.


Subject(s)
Mice , Animals , Bacterial Infections/physiopathology , Cytokines/physiology , In Vitro Techniques , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/physiology
9.
Braz. j. med. biol. res ; 29(10): 1265-7, Oct. 1996. ilus, tab
Article in English | LILACS | ID: lil-186172

ABSTRACT

Foreign genes were introduced and expressed in vivo in guinea pigs and cattle utilizing a new hand-held device based on high-pressure helium gas to accelerate DNA-coated microparticles. Guinea pigs were used to evaluate the physical parameters to introduce and express the exogenous DNA. The best conditions were applied to conduct bombardments in cattle. The results showed a high frequency of gene expression in all the bombarded cattle. This procedure could be used to study the immune responses in cattle and in a wide variety of animals through genetic immunization.


Subject(s)
Guinea Pigs , Cattle , Animals , beta-Galactosidase/genetics , Biolistics/statistics & numerical data , Gene Expression/genetics , Immunization
SELECTION OF CITATIONS
SEARCH DETAIL